Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase
نویسندگان
چکیده
ADP-ribosylation factors (ARFs) are small GTP-binding proteins that are regulators of vesicle trafficking in eukaryotic cells [1]. ARNO is a member of the family of guanine nucleotide exchange factors for ARFs which includes cytohesin-1 and GRP-1 [2] [3-5]. Members of this family contain a carboxy-terminal pleckstrin homology (PH) domain which, in the case of GRP-1, has been shown to bind the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) in preference to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) in vitro [3,4]. Here, we show that recombinant ARNO has the binding characteristics of a PIP3 receptor and that this activity is restricted to the PH domain. When expressed in murine 3T3 L1 adipocytes, ARNO tagged using green fluorescent protein (GFP) is localised exclusively in the cytoplasm. Stimulation with insulin, however, causes a rapid (< 50 second) PH-domain-dependent translocation of GFP-ARNO to the plasma membrane. This translocation is blocked by the PI(4,5)P2 3-kinase (PI 3-kinase) inhibitors wortmannin and LY294002, and by co-expression with a dominant-negative p85 mutant, suggesting that the translocation is a consequence of insulin stimulation of PI 3-kinase. Our data strongly suggest that ARNO binds PIP3 in vivo and that this interaction causes a translocation of ARNO to the plasma membrane where it might activate ARF6 and regulate subsequent plasma membrane cycling events.
منابع مشابه
Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes.
Insulin stimulation of 3T3-L1 adipocytes causes rapid translocation of actin and the GLUT4 glucose transporter to the plasma membrane. Both processes depend on the activity of phosphatidylinositol 3-kinase. Using single cell microinjection, we have transiently expressed a constitutively activated mutant of phosphatidylinositol 3-kinase, p110*, in 3T3-L1 adipocytes. Fluorescent detection of GLUT...
متن کاملSeparation of insulin signaling into distinct GLUT4 translocation and activation steps.
GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase gl...
متن کاملInsulin receptor signals regulating GLUT4 translocation and actin dynamics.
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Rec...
متن کاملOkadaic acid activates atypical protein kinase C (zeta/lambda) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport.
Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, is known to provoke insulin-like effects on GLUT4 translocation and glucose transport, but the underlying mechanism is obscure. Presently, we found in both rat adipocytes and 3T3/L1 adipocytes that okadaic acid provoked partial insulin-like increases in glucose transport, which were inhibited by phosphatidylinositol (PI) 3-kinase inhi...
متن کاملParaquat-induced oxidative stress represses phosphatidylinositol 3-kinase activities leading to impaired glucose uptake in 3T3-L1 adipocytes.
Accumulated evidence indicates that oxidative stress causes and/or promotes insulin resistance; however, the mechanism by which this occurs is not fully understood. This study was undertaken to elucidate the molecular mechanism by which oxidative stress induced by paraquat impairs insulin-dependent glucose uptake in 3T3-L1 adipocytes. We confirmed that paraquat-induced oxidative stress decrease...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998